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Abstract

Equilibrium programming is investigated as a frame-
work within which optimal structural design problems

can be decomposed into subproblems. Aspects of equi-

librium programming theory pertinent to this appli-
cation are described, and three decompositions of a

structural design problem into structural-sizing and
structural-response subproblems are developed. Two

of the decompositions are shown to be equivalent to ex-

isting solution methods. However, the third method is

novel and is shown to give optimal solutions both the-

oretically, and in two numerical examples.

Introduction

Nonlinear mathematical programming (NLP) is ex-

tensively used for optimal structural sizing in structural

design. Utilizing NLP, a sizing design problem mini-
mizes an objective function, such as weight, and satis-

fies a set of design constraints, such as minimum gauge
and local stress limits, by varying a set of structural-

sizing design variables, such as facesheet thicknesses,

and stiffener heights. The structural analysis that is

required to compute the design constraints is subordi-
nate to the optimization algorithm in the simplest use

of NLP. That is, the structural response is recalculated

for every change in the values of structural-sizing de-

sign variables in the design process. The disadvantage

of this approach is the expense of performing numer-
ous structural-response and sensitivity-derivative calcu-

lations during the design process. The incorporation of

approximation concepts by Schmit and Miura (ref. 1)

within NLP structural-sizing design methods signifi-

cantly improved the computational efficiency of the
method. Thus, approximation-based NLP structural-

sizing design methods are now well developed, and are

implemented in several commercial structural analysis
codes.

Though approximation-based NLP structural-sizing
design methods have a computational advantage over

simple NLP approaches, the design of structures incor-

porating a high degree of detail requires a large number

of design variables and constraints. Additional improve-

ments in optimal structural-sizing methodology are re-
quired to deal with increasingly large numbers of design

variables and constraints. One approach to the solution

of large problems is to decompose a large problem into
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a set of smaller subproblems. Most of the smaller sub-

problems can be solved separately and in parallel to re-
duce the time required to find the optimum design. By

repeating this decomposition process at the subproblem
level, a multilevel decomposition (ref. 2 and references

therein) can be obtained. One concern in the decom-
position of an optimum design problem is whether any
solution exists to the decomposed problem. If a solution

exists, another concern is whether this solution to the

decomposed problem is also a solution to the original

problem. Although progress has been made in address-

ing these concerns (see ref. 3), and in utilizing multilevel

decomposition for optimal design, a mathematical the-

ory that provides a framework for performing design
decomposition appears lacking.

The theory of equilibrium programming (EP) pro-
vides a framework to analyze multiple, interdependent

nonlinear programming problems. Equilibrium pro-

gramming was developed in an operations research set-
ting, and has been applied to economics, game theory,

and network theory (ref. 4). Approaches to decompo-
sition of structural-sizing design problems utilizing an

equilibrium programming framework are developed in
the present study. The decompositions examined in-

vestigate several ways to separate the design problem

into a structural-sizing subproblem, and one or more
structural-response subproblems. The theorems on the

existence of, and the necessary conditions for an EP so-

lution are utilized to develop decompositions that have

solutions, and to deti_rmine whether a solution is op-

timal. In subsequent sections of the present paper,
the characteristics of EP solutions are described, and

some EP-based approaches to decomposition in struc-

tural design are summarized. Specifically, structural-

response and structural-sizing problems for minimum

weight design in the presence of structural-sizing de-
sign variable constraints, local buckling, stress, and dis-

placement constraints are presented, and decomposed
into several formulations utilizing EP. It is shown herein

that two established structural-design methods; namely,

fully stressed design (ref. 5) and NLP-based structural

sizing using first-order Taylor series approximations of

the constraints (ref. 1), can be derived using EP. A new
decomposition derived using the EP framework is also

presented. Computational results from this new EP-
based formulation are compared with results from an

established design method.



Nomenclature

Lower case symbols typed in boldface denote col-

umn vectors, however some vectors are not denoted
in this manner. The notation af/Oa for an arbitrary

scalar f and a vector a = (al,...,an) T denotes the

gradient of scalar f with respect to vector a. This

gradient is expressed as a row vector (i.e., cOf/cga =

(cgf/aal,...,af/(gan)). The notation _gf/(ga for arbi-
trary vectors f = (fl,.--, fro) T and a = (al,..., an) T

denotes the gradient of vector f with respect to vector

a. This gradient is expressed as an m x n matrix in
which the component in column j of row i is given by

Oft/aaj. The notation df/da is utilized to represent nu-
merical values of the total derivative of f with respect

to the vector a using a matrix format similar to that of

cof/ aa.

A

g

FE

f

h

K

L

M

N

u

v

V

W

X, Xi, _i

A

P

vector of cross-sectional areas

vector of inequality constraint functions

vector of external nodal forces

objective function in nonlinear
programming

vector of equality constraint functions

global stiffness matrix for a structural-

response problem

Lagrangian function, (see equation (20))

number of structural-response cases

vector of stress resultants within every
element of the structure

vector of nodal displacements from a
structural-response problem

vector of design variables for nonlinear

programming, or vector of structural-

sizing design variables in equilib-

rium programming structural-sizing

subproblems

strain energy of a structure

weight of a structure

vectors of all design variables for equi-
librium programming, design variables

of subproblem i, and all design vari-

ables except those from subproblem i,

respectively

vector of Lagrange multipliers for

inequality constraints

vector of Lagrange multipliers for

equality constraints, (used for inequality
constraints in the appendix)

O'

Subscripts

A

i

max

rain

N

$

T

u

_r

vector of stresses within every element of
a structure

and Subscripts:

denotes an approximation of a function

denotes i'th equilibrium programming

subproblem, or i'th load condition for
structural response

maximum

minimum

denotes functional dependence on stress
resultants

side constraints

transpose of a vector or matrix

denotes displacement constraints, or

functional dependence on displacements

denotes stress and local buckling con-
straints, or functional dependence on
stresses

denotes an equilibrium programming

solution (i.e., the equilibrium point), an
optimal solution, active constraints, or

Lag-range multipliers corresponding to
active constraints

Theory

To have a basis for comparison with the equilibrium

programming (EP)-based formulations that follow, this

section begins with a summary of the methodology

for utilizing nonlinear programming (NLP) for struc-
tural design. Some results from EP theory are then

presented, and some characteristics of equilibrium pro-

gramming problems are described. Three decomposi-

tions of structural-design problems are developed using

the EP framework, and some implementation issues are
addressed.

Nonlinear Programming Approach to
Structural Design

Nonlinear programming can be personified as having

one decision maker (which may be implemented as

a search algorithm) with control of a set of design

variables given by the vector v. The goal of the
decision maker is to minimize an objective function f(v)

while satisfying a set of constraints. The mathematical

description of a NLP problem is:

rain f(v)
v

gCv) >_o

hCv) = o

(1)



NLP Problem
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Algorithm
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Analysis
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Figure 1. Block diagram illustrating the major components
of a solution algorithm for a NLP problem.

where g(v) are inequality constraints - which could in-

clude simple bounds on the design variables - and h(v)

are equality constraints. A simple block diagram illus-
trating the major components of a solution algorithm

for a NLP problem is shown in figure 1. As shown in

this figure, the analysis module is subordinate to the al-

gorithm that searches the design space for the optimum

design variables, and it can be queried for function (and

gradient) values at will.

The first-order conditions that are necessary for v =

v* to be a solution to the NLP problem represented by
statement (1) are often used in solution procedures. If

a constraint qualification - such as linear independence
of the active constraints at v = v* - is satisfied, then

a set of Lagrange multipliers (A,, p) exists such that at
v = v* the following necessary condition relations are
satisfied:

(0f(v)
_v )_T Og(v)o_tr _T 0___(yY)

g(v) >_0

h(v) = 0

__>0

)_Tg(v) ----0

--=0

(2)

The functions g(v) and h(v) for a structural-design
problem implicitly involve the structural response; so

results from structural analyses are necessary to deter-
mine these constraint functions.

Structural Analysis. A minimum potential energy
formulation can be used to calculate the structural

displacements and internal stresses that are required to

evaluate a design. Given the structural arrangement,

sizes for all the structural elements, a discretization of
the structure into finite elements, and a set of external

forces on the discretized structure FE, the correct

structural displacements are those that minimize the

potential energy of the structure. Thus, the structural

response is the solution to the unconstrained NLP

problem given by

m_n (V(u)- FTu) (3)

where u is a vector of nodal displacements, V(u) is

the strain energy of the structure, and F E is a vector
of external nodal forces. In the present study, a lin-

ear structural analysis is assumed, the strain energy is

given by V(u) = 1/2 uTKu, and the necessary condi-

tion relations (2) for the unconstrained minimization

problem represented by statement (3) simplify to the

linear equations:
gu = FE (4)

where K is the global stiffness matrix. Once the

displacements u have been determined from equation

(4), stresses _ within every element of the structure
can be calculated from the displacements, the element

strain-displacement relations, and the element elastic
constants.

Optimal Structural Sizing. A common objective

function for structural sizing is the weight of the struc-

ture W(v). The structural-sizing design variables v,

referred to herein as sizing variables, can be the di-

mensions of the individual elements that explicitly con-
tribute to weight, such as beam dimensions, facesheet

thicknesses, stiffener dimensions and spacing, and tk_

thicknesses of a non-load-bearing spacer material; or

they can be factors which effect the weight in an
indirect manner, such as the orientation of compos-
ite fibers. The constraint functions considered in the

present study are the sizing variable constraints, or side
constraints, gs(v); the local buckling and stress con-

straints g_ (v, a i(v)); and the displacement constraints

g/u(ui(v)). The superscript i indicates that these quan-

tities correspond to structural load condition i (i.e., to

the vector of external nodal forces F_). The displace-

ment constraint functions giu(ui(v)) are assumed to

have no direct dependence on the sizing variables v, but

the functional form ui(v) indicates an indirect depen-

dence on v through the structural analysis. The stresses

a(v), which are shown to depend on v in the constraint
functions, can have several forms. For example, one

can write _'(v) = O'u(V,U(V)) = O'N(V,N(v,u(v)) ) to
show that the functional form for stresses can depend

directly on displacements u, or indirectly on displace-

ments through the stress resultants N. Very often the
side constraints, the displacement constraints, and the

stress constraints reduce to simple bounds on the sizing



variables,thedisplacements,andthestresses,respec-
tively.Thus,theNLP-baseddesignapproachin which
thestructuralanalysesaretreatedassubordinatetothe
sizingvariablesearchalgorithmcanbesummarizedby:

rainW(v)
V

gs(V) > o

du(U (V))> o
g_(v,a_(v)) _>o

(5)

where i = 1,..., M for M load conditions. The neces-

sary conditions for v = v* to be the solution to the NLP
structural-design problem given above are as follows:

_W(v) T _gs(v)
0v As --_

--z['M [{Ak_TOgk(uk)u, _U k oquk(V)0v + (Aka)T
k=l

k)0v + _ 0v

gs(v) > 0

gC.(u_(v))>_o (o)
g_(v, _'(v)) > o

As_>O

(As)Tgs(V) = 0

i T i i(_u) gu(u (v)) = o

= o

where i = 1,..., M. The terms u_(v) and aui(v)/Ov
are found by solving the following structural-analysis

and sensitivity-derivative equations in which the param-
eter vector v is assumed known:

K(v)u i- F_ = 0

Oui OK(v)u i
K(v)-_- + 0v = [0]

(7)

where it is also assumed that the nodal forces F_ are

independent of v.

Equilibrium Programming Theory

In this section of the present paper, the formulation

of an equilibrium programming problem is given. In

addition, the first-order necessary conditions that are

satisfied by a solution to an EP problem, a theorem on

solution existence, some solution properties, and some

4
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Fig_lre 2. Block diagram illustrating the subproblem cou-
pling in an EP problem.

solution algorithms are summarized. References are

made to the application of EP to design decompo6ition

where appropriate.
Equilibrium programming is a generalization of NLP

which can be personified as having M + 1 decision mak-

ers (which may be implemented as search algorithms)
that interact in a system. Each decision maker has a

NLP subproblem to solve, and an independent set of

design variables to control. To simplify notation, the

design variables controlled by decision maker i are de-
noted as x i, the design variables of all M + 1 decision
makers are denoted as x = (x°,..., xM), and all design

variables not controlled by decision maker i are denoted
as Xi = (x°,... ,xi-i,x i+1, ... ,xM). Decision maker i

has an objective function to minimize, f_(x _, _), while

satisfying a set of constraints. Thus, the mathematical
description of equilibrium programming is:

min fCx¢,X i)
X 4

gi(xi,X_)>_o

h_(x_,X')=0

(8)

for the i = 0 .... , M interacting subproblems. The

variables following the comma in any of the functions

in statement (8) are treated as fixed parameters inthat
subproblem. Thus, in the NLP problem of decision

maker i, the design variables from other decision makers
_i enter as parameters. The coupling of the M + 1 NLP

subproblems through their design variables is illustrated

in the block diagram of figure 2. In this figure, each

subproblem is a NLP problem which might be solved

by a solution algorithm like that of figure 1.



Thesolutionto all the NLPsubproblemsrepre-
sentedbystatement(8) isx = x*, whichiscalledan
equilibrium point. In a manner similar to NLP, first-
order necessary conditions are satisfied at the equilib-

rium point subject to a constraint qualification. Thus,

at the equilibrium point x = x*, there exist Lag-range

multipliers (A i,/_i) such that the following conditions
are satisfied:

Of(x i, _i) (,V)T0g_(x_ ' _,)
0x_ _-7

-(_,_) r°h_(x''_ _) = 0
0x i

gi(xi,._i) >_ 0

hi(x i, ii) = 0

A_>0

(,V)Tg_(x _,_) = 0

(9)

for i = 0,...,M.

Existence and Optimality of an Equilibrium Point.

In utilizing EP for a design decomposition, it is impor-
tant that a solution exists for the decomposed problem.

In fact, the requirements for existence of an equilib-

rium point can be used as a guide in the decomposition

process. A second concern involves the optimality of
the equilibrium point. That is, is the equilibrium point

resulting from the decomposition of a design problem

also an optimal solution of the original NLP formula-

tion? This second concern can be addressed by show-

ing that EP necessary condition relations (9) for the
decomposed problem imply the NLP necessary condi-

tion relations (6) of the undecomposed problem. Both

the existence and the optimality of an equilibrium point

depend on the satisfaction of a constraint qualification.
The satisfaction of a constraint qualification is re-

quired for both the existence of a solution to the first-
order conditions represented by statement (9), and the

existence of an equilibrium point. One form for the

constraint qualification is given in reference 6. It is sat-
isfied if for all x feasible to the NLP subproblems repre-

sented by statement (8), and for every i: 1) the vectors

Oh_(x i, _i)/Oxi are linearly independent, and 2) there
is at least one solution z i to the relations"

0g_(x _, _'zi_ > 0
0x i

ah_(x_' x_) z _ = 0
0x i

(I0)

where g_ is the vector of inequality constraints in sub-

problem i that are active at x. With regard to the in-
equality constraints, this constraint qualification essen-

tially states that it is always possible to move into the

interior of the feasible region from a point on the bound-

ary of that region. However, because constraint qualifi-

cation relations (10) must be satisfied individually by
the EP subproblems, the constraint functions in EP

must satisfy more restrictive requirements than those

in NLP. For example, the constraints from two EP sub-
problems given by g_(., x 2) and g,2(x2, .) will not satisfy

relation (10) individually because (0g.1/0xl)z I _= 0.

tlowever, relation (10) may be satisfied for this exam-

ple when the constraints and design variables of the

subproblems are combined within a single NLP prob-
lem (i.e., (0g./0x)z > 0 where g. = (g.l g.2) and

x = (_l,x2)).

A very general theorem for existence of an equilib-
rium point, given in reference 6, requires continuity,

but not differentiability, of the objective and constraint

functions. Other conditions for existence are: 1) the

functions satisfy constraint qualification relations (10)

(actually only a weakened form of the constraint qual-
ification is required), 2) the feasible region is bounded,

3) the functions fi(xi,_) and g_(xi,_ i) are concave

in x i, and 4) the functions hi_.(xi, _ _) are linear in x _.
2

Other existence theorems are available which relax the

concavity and linearity restrictions on (fi, gi) and h i,

respectively, if additional differentiability requirements
are satisfied.

Three methods are used in the present study for the

decomposition of a design problem into EP structural-

sizing and structural-response subproblems. The re-
quirements for existence and optimality of the EP solu-

tions are utilized as guidelines for applying these meth-
ods in the decomposition process. In the first decom-

position method, a constraint is applied only within a
subproblem for which the design variables are effective

in satisfying the constraint. Here effectiveness is de-
termined by ability to satisfy constraint qualification

relations (10). This method is akin to the concurrent

subspace optimization method for optimization decom-
position described in reference 7. In the second decom-

position method, a constraint is applied within a cho-
sen subproblem, and a change of variables is performed

to yield a set of the design variables and constraints

which satisfy the constraint qualification relations. In

the third decomposition method, a constraint is applied
within a chosen subproblem, and parameters of the con-

straint functions which are normally independent of the

subproblem design variables are replaced with approxi-
mate models that depend explicitly on the subproblem

design variables, thus satisfying constraint qualification
relations (10). For example, in a constraint function

g_(Ri) for subproblem i, the parameters _i which are
normal!y independent of the subproblem design vari-
ables x _ are replaced with approximations that depend

explicitly on x i. This method is closely related to the



approximationconceptsof reference 1, and in fact, the
use of explicit approximations of constraint functions in

the NLP-based design methods can be viewed as a type

of design decomposition. Examples of utilizing these de-

composition methods in the development of structural-

design equilibrium programming methods (SDEP) are
given in a subsequent section of the present paper.

Some Equilibrium Point Properties. Although the

differences between an equilibrium point and an optimal

point may appear slight, they are important. The fol-

lowing equilibrium point properties, summarized from
reference 4, illustrate the differences. Several examples
of these differences can be found in the reference.

An equilibrium point is, in general, different from

an optimal point (i.e., the solution of a NLP prob-

lem), even if the same constraints are satisfied and each
EP subproblem has the same objective function. This

difference can occur because the coupling of the con-
straint derivatives in the respective necessary condi-

tions is generally less for an EP formulation than for
a NLP formulation. Thus, the subproblems in EP can

be called "loosely coupled." Larger differences between
the EP and NLP solutions can occur when the M + 1

subproblems in EP have M + 1 different, and possi-

bly conflicting, objective functions. (However, two of

the structural-design decompositions described subse-
quently are specifically formulated to ensure that an

equilibrium point is also optimal.) An equilibrium point

has a "stability >' property which states that a solution
to the EP problem does not change for a perturbation of

the design variables of a single subproblem from equi-
librium values. Additional constraints can affect EP

solutions differently than NLP solutions. In NLP, ad-

ditional constraints generally increase the value of the

objective function. However, in EP it is possible for
additional constraints to force a "cooperation" that re-

duces the objective functions of all the EP subprobtems.

EP Solution Algorithms. The solution of an EP

problem can be obtained in several ways. The most

straightforward method is to solve sequentially all

the subproblems in some predetermined cyclical or-
der. When the solutions to all the subproblems do not

change from the previous iteration (within some numer-

ical tolerance), the equilibrium point has been reached.

This method is utilized in the present study. Other
methods, such as solution of the set of nonlinear neces-

sal T condition equations (ref. 4), are also possible, and

may be advantageous when convergence is difficult to
achieve by the sequential solution method.

Equilibrium Programming Approaches to

Structural Design

In this section of the present paper, decompositions

of a structural-design problem into structural-response

and structural-sizing subproblems are described. These

decompositions are denoted as structural-design equi-

librium programming (SDEP) formulations. In the suc-
ceeding formulations, it is assumed that there are M

structural load conditions given by F_, i = 1 .... , M;

and that, in general, the constraints of interest are siz-
ing variable, stress, local buckling, and displacement

constraints. In some cases, the formulations simplify

appreciably when the_ constraints are reduced to sim-
ple bounds. The formal definition of x i will be given

for each subproblem. This formal definition may in-

clude both optimization design variables, and behavior

variables which result from a post-processing analysis

within the subproblem. The conversion of the analy-

sis for behavior variables to subproblem equality con-
straints that conform to the EP formalism is obvious,

and omitted in the development of the formulations.
The three SDEP formulations that follow are de-

rived using the methods for decomposition described
previously. The logical steps for utilizing the decompo-
sition methods to derive the formulations are described

separately for each formulation. The first structural-
design equilibrium programming formulation developed

considers only stress, local buckling, and minimum

gauge constraints. This method, termed SDEP1, is
shown to be equivalent to the method of fully stressed

design for rod and membrane elements. The second and
third SDEP formulations, denoted SDEP2 and SDEP3

respectively, provide for optimal designs with sizing
variable, stress, local buckling, and displacement con-

straints. Formulation SDEP2 is shown to be equivalent

to the NLP-based approach to optimal structural siz-

ing using a first-order Taylor approximation for a rapid
analysis. Formulation SDEP3 is new, and the existence

and optimality of its equilibrium points are discussed.

Structural-Design Formulation SDEP1. It seems

natural to define EP subproblems i = 1,..., M, corre-

sponding to the M load conditions F_, to be structural-
response subproblems, each a minimization problem

represented by statement (3), and to define the subprob-
lem design variables x i to be the displacements u i ob-
tained from these minimization problems. This choice

leaves subproblem 0 as the structural-sizing subproblem

(i.e., minimize the structural weight by varying sizing

variables x° - v subject to the sizing variable, stress,

and buckling limits in the NLP problem represented by

statement (5)). The shortcoming of this EP formula-
tion is that an equilibrium point may not exist because

constraint qualification relations (10) cannot be satis-

fied for some constraints. For example, maximum stress

constraints for rod elements having cross-sectional areas
A as design variables (i.e., x ° -= v _= A) are given by

g_(x) = amax a(u _) > 0. These constraints depend
on the displacements x i -- u i, and not on x ° _= A; so
there is no z ° that will satisfy the inequality in relation

6



(10). Thus, a different decomposition is required.
The formulation SDEP1 utilizes the second decom-

position method described previously to enable satis-
faction of the constraint qualification relations. Since

functions for calculating the stress and buckling con-

straints can be constructed by using both the sizing
variables and the stress resultants of a structure, a

change of variable is made to utilize stress resultants in
the constraint functions. Because the stress and buck-

ling constraint functions depend explicitly on the sizing

variables with this change of variable, the satisfaction
of the constraint qualification is much more likely, but

satisfaction is not guaranteed as will be explained sub-

sequently. The stress resultants within every element

in the structure are computed within the structural-

response subproblems, and are formally represented in

subproblem i by the equation

N i =Ni(v,u i) (11)

In formulation SDEP1, the structural-response sub-

problem i consists of a solution of the unconstrained

minimization given by statements (3) or (4) for u _ fol-
lowed by calculation of stress resultants N z by equation

(11). The design variables of structural-response sub-
problem i are defined as x i = (u i, Ni). The stress resul-

tants N i are used instead of displacements in formulat-

ing the stress and buckling constraints of the structural-

sizing subproblem, which is also denoted subproblem 0.

Thus, the structural-sizing subproblem in equilibrium

programming formulation SDEP1 is:

min W(v)
v

Y- Vmi n > 0

g (v,  N(V, > 0

(12)

where i = 1,...,M. The design variablcs of this

structural-sizing subproblem are simply x ° = v.

The method of fully stressed design (ref. 5) can

be derived from SDEP1 if: 1) only one-dimensional
rod and two-dimensional membrane finite elements are

used; 2) one sizing variable is associated with each fi-
nite element having a stress constraint; 3) the stress

constraints limit the maximum stress magnitude or von

Mises stress; and 4) there are no buckling constraints.
The structural-sizing subproblem can then be decom-

posed into a set of independent elemental problems, one

for each sizing variable and constrained element com-
bination. The solution of these elemental problems is

simple since the value of the sizing variable that makes

a constraint active can be found analytically for each

load case. For example, the elemental problem for cross-

sectional area of one-dimensional rod element j is solved

by:

At = max(A ,mi., I  jMI/-j,m )
(13)

where the function max(...) chooses the maximum of

its arguments, the structural-sizing design variable x 0 is

defined to be the sizing variable At, and peli is the ax-zj
ial force in the element j for load case i. The quantities
p__l_ are elements of the vectors N i which are also ele-

z,J

merits of x i and R0. A solution method that alternates

between solving the sizing elemental problems, and the
structural-response subproblems leads to fully stressed

design.

As stated previously, the change of variables that
recasts the stress and buckling constraints in terms of

sizing variables and stress resultants makes the satis-

faction of the constraint qualification much more likely,

but not guaranteed. A simple example makes this state-

ment clear. Assume a rod is fixed between two rigid
walls and its temperature is increased; the design prob-
lem is to size the rod cross-sectional area A to minimize

weight and satisfy a maximum stress constraint. The

temperature change induces a strain which can be ex-
pressed as an equivalent external load that is a func-

tion of the stiffness. Thus, the equivalent external load
and the rod stress resultant are both calculated in the

structural-response subproblem as P= -- k A AT where

k is a constant of proportionality, and AT is the tem-

perature rise. The stress, which is calculated in the

structural-sizing subproblem, is given by a = Pz/A, and
also equals the quantity k AT. If this quantity is larger

than the stress limit, it is intuitively obvious that no so-

lution can be found, and in practice, the rod area using
the SDEP1 formulation would increase without bound.

The failure of SDEP1 to find a solution is a direct re-

sult of the requirements for existence of an equilibrium

point. One requirement is the boundedness of the feasi-

ble region of the design space. This requirement can be

satisfied by arbitrarily imposing a maximum area con-
straint on the rod. However, at the feasible point where
both the maximum area and the maximum stress con-

straints are active, it is not possible to change the rod

area to move into the interior of the feasible region, vio-

lating the constraint qualification required for existence
of an equilibrium point. Thus, the failure of SDEP1

(and fully stressed design) to find a solution to this sim-
ple problem is clarified by the EP existence theorem.

Because SDEP1 is a form of fully stressed design,

it shares the advantages and disadvantages of fully

stressed design. The primary advantage is the simple
nature of a structural-sizing subproblem that requires

no derivatives and is easily decomposed into a set of in-

dependent elemental problems. The disadvantages are:

1) there is no mechanism to ensure satisfaction of the

7



necessary conditionsrepresentedby statement (6) so

that the resultingequilibriumpointmay not be an op-

timalpoint;and 2) constraintsthat have no explicitde-

pendence on the sizingvariables,such as displacement

constraints,are not considered.An EP formulationis

desiredwhich satisfiesthe necessary conditionsrepre-

sented by statement (6) at an equilibriumpoint,and

can satisfydisplacementconstraints.The two formula-

tionsdescribedsubsequentlyovercome thesedisadvan-

tagesof SDEPI.

Structural-Design Formulation SDEP2. As dis-

cussed for SDEP1, if EP subproblems i = 1,..., M are
identified as structural-response subproblems each rep-

resented by statement (3), and subproblem 0 is identi-
fied with a structural-sizing subproblem given by state-

ment (5), the constraint qualification relations (10) can-
not be satisfied for any displacement constraint because

the displacements would be fixed parameters within
the structural-sizing subproblem. In addition, the con-

straint qualification relations may not be satisfied for
certain stress and buckling constraints. Utilizing the

third decomposition method described previously can

overcome this difficulty.

In EP formulation SDEP2, the displacements u',

which are parameters independent of the sizing vari-
ables in structural-sizing constraint functions g(v, ui),

are replaced with a first-order Taylor series approxima-

tion given by

(v- v,)+ uuA -- W-v (14)

In equation (14), the matrix dui/dv is a matrix of

optimal sensitivity derivatives (ref. 8) of the displace-

ments in subproblem i with respect to v, and vi is the
value of v utilized in subproblem i when the sensitivities

are calculated. All the design variables for structural-

response subproblem i are utilized in equation (14) since

x i _= (u i, dui/dv, vi). This approximation satisfies the
following two properties. First, the approximation de-

pends explicitly on v so that constraint qualification

relations (10) necessary for equilibrium point existence
can be satisfied. Second, it satisfies the conditions:

u Ai = u i and Ou A i/o%' = 0u_/0v at the equilibrium

point x = x* where v = vi = v*. This second set of
conditions ensures the optimality of the design given by

the equilibrium point because the EP necessary condi-

tions represented by statement (9) are then the same

as the NLP necessary conditions represented by state-

ment (6).

Using the definitionofequation (14),the structural-

sizingsubproblem isgiven by the followingstatement:

min W(v)
xO--v

g.(v)_>o

gi.(uAi(v,xil)>_o

i(v,x')))> o

(15)

The structural-responsesubproblems forSDEP2 are

the subproblernsrepresented by unconstrained mini-

mizationsgivenby statement (3) (orthe necessarycon-

ditionsgiven by equation (4)),and the followingequa-

tionsthat determine the behavior variablesdu'/dv and

vi:

du _ OK(v)u _
K(v)-_- + o%" = [0] (16)

V/. _V

for i = 1,...,M. The first of the two equations in

(16) can be viewed as an optimal sensitivity analysis
of u i with respect to parameters v since u _ are design

variables of the NLP problem given by statement (3),
and the second equation is a trivial identity which saves

the values of the structural-sizing variables at which the

sensitivity analysis was performed.

SDEP2 is equivalent to a NLP approach to struc-

tural design with a first-order Taylor series for an ap-

proximate analysis when the equilibrium point is found

by the following sequential steps: 1) solve the subprob-
lems represented by statement (3) (or necessary con-
ditions represented by statement (4)) for u i for each

i = 1,..., M; 2) solve equations (16) for du_/dv and

v_; 3) use the quantities found in steps 1 and 2 in

equation (14) to form approximate models for displace-
As z

ments u '(v,x); 4) utilize the approximate models of

step 3 in the structural-sizing subproblem represented

by statement (15) to solve for v; and 5) repeat steps

I through 4 until the changes in the solutions from the

previous iteration are smaller than a specified tolerance.

Structural-Design Formulation SDEP3. In the pre-

ceding decompositions derived within the EP frame-
work, all the design constraints are included in the

structural-sizing subproblem. In the SDEP3 decom-

position, the displacement constraints g_ are applied
within structural-response subproblem i, so that the

unconstrained structural-response subproblem, repre-

sented by statement (3), becomes a constrained min-
imization. This step corresponds to the first decom-

position method described previously. However, the
constrained structural-response subproblem no longer

gives the response of the structure to the applied nodal

forces F_ because "virtual" nodal forces are also ap-
plied to satisfy the displacement constraints. These vir-
tual nodal forces and the steps required to obtain the

correct structural response are discussed subsequently.



The constrained minimization solved within struc-

tural-response subproblem i is

min (ui)TK(v)u / - (FE) u
u' (17)

g/u(u i) > 0

and the necessary conditions for this subproblem are

• oK(v)u i-F_- \ 0u' =

g (u > 0 (18)

A_>_0

= 0

It is apparent from the necessary conditions represented

by statement (18)that quantities (agiu(ui)/0ui)Txi

are similar to the applied nodal forces F_, and can
be considered as "virtual" nodal forces. If the La-

grange multipliers X i in these virtual nodal forces can

be forced to zero by modification of the sizing variables,
then the correct structural response is obtained. To ac-

complish this task, the values of the Lagrange multi-

pliers and their sensitivity derivatives with respect to

the sizing variables must be supplied to the structural-

sizing subproblem. Since statement (18) implys that
the Lagrange multipliers and their sensitivity deriva-
tives are zero for inactive constraints, and the sensi-

tivity derivatives of the active displacement constraints
are also zero, the sensitivity derivative equations to be

solved in structural-response subproblcm i are given by
reference 8 as

02L_(u ', v,X') du ' ( 0gL, (u _) _ 7,d_,
O(ui)TOu i dv _ _ 'fl

02L _ (u _, v, Ai) (19)
a(uqTav =[o]

Og ,(u du
aui dv = [0]

In equations (19), the vector giu,(Ui ) represents the

active displacement constraints, the vector ,V, are the

Lagrange multipliers corresponding to these active dis-
placement constraints, and the function Li(u ', v, A_) is

the Lagrangian function defined by

1

Li(ui v, Ai) = 2(ui)TK(v)u i _ (FE)i 7"ui

- (Ai)7,g u(Ui)

--__ l (ui)TK(v)ui -- (F_)Tu i

iTi i- g.,(u )

(20)

If the stress and buckling constraints are included

within the structural-sizing subproblem, and they are
calculated from stress resultants N i of structural-

response subproblem i, the second decomposition meth-

od previously described is also utilized in SDEP3. As
discussed for the SDEP1 formulation, this approach

may not yield an optimum design for a redundant struc-

ture. However, substituting approximate models, which

depend explicitly on the sizing variables, for the stress

resultants (as in reference 9, or equivalently, in the third
method for decomposition) yields an optimal EP formu-

lation. Thus, the stress resultants, and their sensitivity

derivatives with respect to the sizing variables are re-

quired, and are obtained from the equations

N _ - Ni(v, u i) = 0

dN i 0Ni(v, u i) du i 0Ni(v, u i) (21)
dv dv 0v = [0]

In summary, structural-response subproblem i is

represented by statements (17) or (18), and statements

(19) and (21) with the addition of the trivial conditions

v_ = v, as in method SDEP2, and the equations

giu = giu(Ul )

dgiu = 0giu(ui) du _ (22)
dv 0u i dv

The design variables for this structural-response sub-
problem are x i - (u i, N i, X i, giu, vi, dui/dv, dNi/dv,

dAi /dv, dgiu/dv).
The formulation of the structural-sizing subprob-

lem is now discussed. As mentioned previously, if the

stress and buckling constraints are included within the

structural-sizing subproblem and they are calculated
from stress resultants N i of structural-response sub-

problem i, then the substitution of approximate models
which depend explicitly on the sizing variables for the

stress resultants yields an optimal EP formulation. In

SDEP3, a first-order Taylor series approximate model
for stress resultant N i is formed as

dN i
N A i(v, x i) - _ (v - vi) + N _ (23)

where the matrix dNi/dv, defined previously, can be
viewed as the total derivative of the stress resultants

with respect to v. The quantities dNi/dv, vi, and N i

are determined within structural-response subproblem

i and are only parameters within the structural-sizing
subproblem.

Although the displacement constraints are satisfied

within the structural-response subproblems, the La-

grange multipliers corresponding to the active displace-
ment constraints must be zero for the correct structural



response to be obtained. If a displacement constraint
is not active within a structural-response subproblem,

a provision within the structural-sizing subproblem is

desired to guard against violation of the constraint. A

constraint function that accomplishes this task within

the structural-sizing subproblem is a first-order approx-
imation in v to the expression giu - ,_i. Component j

of this approximation is given by:

_ d i .
- (v - v,) (g j = o)

Thus, if a displacement constraint is not active in

structural-response subproblem i, the constraint func-

tion in equation (24) is a fully linearized version of the
corresponding form in the SDEP2 formulation. And,

if a displacement constraint is active in structural-

response subproblem i, then a structural-sizing con-

straint with the functional form of equation (24) will
coerce the virtual force in the structural-response sub-

problem to zero. The constraint function in equation

(24) satisfies all the requirements of the EP existence

theorem described previously except for the continu-

ity requirement. Continuity, and therefore equilibrium
point existence, could be established if the function in

statement (24) is replaced with one which differs from it

only over the small transition interval 0 < giuj < e. In
this interval, the constant and gradient terms in equa-

tion (24) are replaced with continuous transition func-
iand i

tions that range between -,_j guj, and between

-d,_i_/dv and dgiuj/dv, respectively. This continuous3

form of the constraint function satisfies the existence

requirement, but has not been found necessary in the

computational procedure. Therefore, the form of state-

ment (24) is retained.

With the previously mentioned definitions, the

structural-sizing subproblem in SDEP3 becomes

min W(v)
XO_V

gs(v) > 0

g/a(V, fiN(V, NAi(v, Xi))) _>0

gAi(v,x i) _> 0

(25)

where i = 1, ..., M, the stress and buckling constraints

depend on the stress resultants as in the subprob-
lem represented by statement (12), and the vector of

"displacement" constraint functions gA _(v, x _) has ele-

ments given by equation (24). A proof of the optimality
of the equilibrium point obtained from SDEP3 is given

in the appendix.
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Implementation of SDEP algorithms

For practical structural-design problems, an equi-

librium-programming-based solution algorithm should
utilize existing finite element structural analysis soft-

ware. Existing finite element programs can easily solve
equations (4) for structural response, but are not well

suited to solving a constrained NLP problem as repre-

sented by statement (17) (or equivalently, the necessary

conditions as represented by statement (18)). Because

of this limitation, the class of displacement constraints
considered in the present implementations of solution

algorithms is restricted to simple displacement limits

such as giu(Ui ) = Umax - u i. In the following sec-

tions, solution procedures are described for solving the
SDEP2 and SDEP3 structural-response, and structural-

sizing subproblems. These procedures are used with the

Engineering Analysis Language (EAL) structural anal-
ysis code (ref. 10) to solve some sample design prob-

lems. The sequential solution approach described previ-

ously, in which the structural-sizing subproblem and the

structural-response subproblems are alternately solved,

is the method chosen for the present study.

Structural-Response Subproblems. The formula-
tion of the structural-response subproblem in SDEP2

uses standard methods for computing the structural re-
sponse and the structural-response sensitivity deriva-

tives (see ref. 11). Thus, existing finite element

codes are well-suited to the structural-response sub-
problem formulation of SDEP2. However, formulation

SDEP3 specifies inequality displacement constraints

in the structural-response subproblems represented by

statement (17). The restriction of the displacement

constraints to simple bounds on displacements in the

present study allows for an easily implemented active

constraint set approach to the structural-response sub-

problems in SDEP3. In this approach, a structural-
response subproblem is solved in an iterative manner

so that a solution to the necessary conditions repre-

sented by statement (18) is obtained from a sequence
of solutions to equation (4) that differ by the boundary

conditions assumed when factoring the stiffness matrix

K. Specifically, when a displacement resulting from the

solution to equation (4) violates either its maximum

or minimum bound, the boundary conditions for the
structural-response subproblem are modified to have

that displacement specified to be the displacement limit

when factoring K for the next solution to equation

(4). The static reactions corresponding to these speci-
fied displacements are computed by the finite element

code. These static reactions equal the displacement-

constraint Lagrange multipliers of statement (18) if the

specified displacement is a lower bound, or the nega-

tive of the displacement-coustraint Lagrange multipli-
ers if the specified displacement is an upper bound (see

"1



the appendix). If any Lagrange multiplier determined
from these static reactions is negative, the correspond-

ing specified displacement should be "freed" in factor-

ing the stiffness matrix for the next solution to equation

(4). Likewise, if any displacement exceeds its allowable
bounds, the appropriate displacement bound is utilized

within the boundary conditions in the next iteration as

previously described. The correct active set of displace-
ment constraints is determined, and the correct solution

to the necessary conditions represented by statement

(18) are obtained when no calculated displacement vi-
olates its bounds, and no Lagrange multiplier is nega-

tive. An additional advantage of this active constraint

set approach to solving the S-'DEP3 structural-response
subproblems is that after u i and ,k _ are determined,

the sensitivity derivatives du_/dv and d.Xi/dv are deter-

mined by standard structural-response sensitivity anal-

ysis methods, and it is not necessary to solve equa-

tion (19). However, solving a constrained structural-
response subproblem is typically more expensive than

solving an unconstrained one because of the necessity

of refactoring the stiffness matrix and resolving the sys-

tem of equations for every change in the assumed set
of active constraints. For the present study, the EAL

sensitivity derivative runstreams of reference 12 were

modified to generate sensitivity derivative information
for both SDEP2 and SDEP3.

Structural-Sizing Subproblem. In the present study,

the structural-sizing NLP subproblems represented by
statements (15) for SDEP2 and (25) for SDEP3 are

replaced with linear programming approximations to

these subproblems having move limits as additional side

constraints on the sizing variables. Move limits are

easily incorporated within the EP theory given in ref-
erence 6, so the details are omitted here. However,

the method used for move limit control in the present

study differs from reference 6 in that the move limit
side constraints are modified before each solution of

the structural-sizing subproblem, not after convergence

to the equilibrium point corresponding to those move
limits. The move limits chosen allow a 30% relative

change in the design variables initially. The relative

change allowed is reduced by 10% before each solu-
tion to the structural-sizing subprobtem, but it is not

reduced below 6%. This strategy for controlling the

move limits is fairly crude and has been found to be
too restrictive for some of the example problems. In

cases for which a linear programming approximation

to a structural-sizing subproblems has no feasible so-

lution, the objective function is modified to include a
constraint violation penalty using the method described

in reference 11. Thus, the subproblem will essentially
minimize the worst constraint violation when no feasible

solution exists. Also, because the stress constraints are

linearized in this approach, there is, in theory, no dif-

ference between the stress constraints calculated from

either displacements or stress resultants. The subrou-

tine DDLPRS of reference 13 was incorporated within

EAL to solve the linear programming problems.

For a large structural model, there can be thousands
of elements that must be examined for local stress and

buckling constraints, and must have the optimal struc-

tural sizes determined. To reduce the number of design

variables and constraints in the structural-sizing sub-

problem, a large finite element model can be partitioned

into regions. Within each region, all the elements are

sized by a few design variables. In addition, the local
constraints within each region can be "lumped" using
the Kresselmeier-Steinhauser cumulative constraint de-
scribed in reference 14. These reduction methods are

utilized only for the civil transport wing problem de-
scribed subsequently in the results section of the present

paper.

Results

Two sample problems, a simple ten-bar truss exam-

ple and a complex high-speed transport wing example,

are evaluated using the SDEP2 and SDEP3 methods de-

scribed above. SDEP2 is designated a "conventional"
method herein, since it is equivalent to conventional

NLP formulations using a Taylor series approximation

for displacements for evaluating the constraints. In the

present study, only a single load condition is consid-
ered in the structural response. The results presented

consider minimum gauge and displacement constraints

only for the ten-bar truss example problem, and min-

imum gauge, displacement, local buckling, and stress
constraints for the high-speed transport wing example

problem.

Ten-Bar Truss

The minimum weight ten-bar truss problem is illus-

trated in figure 3. The vertical and horizontal mem-

bers are each 360 in. long. The material properties

assumed are those for aluminum with a Young's mod-
ulus of l0 T psi, a Poisson's ratio of 0.3, and a den-

sity of 0.1 lbm/in 3. Two 100,000 lb loads are applied,

and the upper displacement limits 51, df2, 53, and t54

for the displacement constraints are shown in the fig-
ure. Results for two design cases are presented. In

case 1, the limits for the displacement constraints are

51 ----- 5 4 ---- 2.0 in. No 52 or 53 limits are assumed for
this case. In case 2, the assumed displacement limits are

_fl = 2.0 in., 52 = 0.75 in., 53 = 0.5 in., and 54 = 1.8 in.

No stress or local buckling constraints are considered
in either case. The bar cross-sectional areas are the de-

sign variables for the structural-sizing subproblem. The
minimum cross-sectional area allowed is 0.1 in 2. For

both cases, results are obtained using two values for

11



TY 360 in._=!= 360 in._

_100,000 Ib

360 in.

2
100,000 Ib

Figure 3. Schematic diagram of geometry, loads, and dis-
placement limits for ten-bar truss example problem.

Table 1. Final bar cross-sectional areas and weight for ten-
bar truss, case 1, initial area -----25 in 2

Bar

Number
r,r

1

2

3
4

5

6
7

8

9

10

Weight,
Ibm

Ref. 11
Area, Area,

in 2 in2
30.52 30.95

0.10 0.10
23.20 23.26

15.22 14.73

0.10 0.10
0.55 0.10

7.46 8.63

21 .O4 20.78

21.53 20.95

0.10 0.10

5060.9 5062.1

SDEP2 SDEP3

Area,
in 2

31.05

0.10

23.23
14.77

0.10

0.10
8.63

20.69

2122

0.10

5064.7

the initial cross-sectional area of all members, 10.0 in 2

and 25.0 in 2. In the solution process, eighty steps of

the sequential iterative solution method using the move

limit strategy described previously are utilized for both
the SDEP2 and SDEP3 formulations.

Design case ! results. The iteration histories of thc

truss weight resulting from formulations SDEP2 (i.e.,
the "conventional" formulation) and SDEP3 for the

case having two displacement constraints are shown in

figure 4 for the 25 in 2 initial cross-sectional area. In

this figure and in subsequent figures, the value of the

ordinate is the value at the beginning of the iteration
indicated on the abscissa; therefore the initial design
conditions are denoted as the conditions at iteration I.

The results for weight in figure 4 are very similiar for

12

the two SDEP formulations. The iteration histories for

the individual design variables also show little difference

between the two formulations. The slow convergence of

the weight is due to the restrictive move limit strategy

utilized in the present study. The move limits control
how fast the areas of bars 2, 5, 6, and 10 can be reduced,

and do not allow these areas to achieve minimum gauge

until iteration 63. Good agreement of final results
from the two SDEP formulations with those reported in

reference 11 is indicated by the final bar cross-sectional
areas and truss weights given in Table 1. Because of

small oscillations in the iteration history results, the
SDEP3 results in this table are for the next-to-last

iteration to present SDEP2 and SDEP3 results that are

"in phase". The agreement between the results from

the two EP formulations is slightly better than their

agreement with reference 11, but overall, the differences
are minor.

The iteration histories of the truss weights for this

design case with the 10 in 2 initial cross-sectional area

are shown in figure 5. The structural-sizing subprob-
lems for both SDEP2 and SDEP3 have no feasible solu-

tions for the initial two iterations (i.e., for results cor-

responding to abscissa values 2 and 3 in figure 5). In
these iterations, the structural-sizing subproblem mini-

mizes the infeasibility, and both methods give identical

results since they are at the side-constraint boundaries

determined by the move limits. The results from the
two SDEP methods differ for the next few iterations

but again agree well at the later iterations. Again, the

slow convergence to the optimum design is due to the
restrictive move limit strategy.

Design case 2 results. The iteration histories of the

truss weights resulting from formulations SDEP2 and

SDEP3 for the design case having four displacement
constraints are shown in figure 6 for the 25 in 2 initial

cross-sectional area. Again, there is little difference be-

tween the weight histories of the two methods shown in

figure 6, or in the individual design variable histories.
t]owever, much larger differences in the iteration histo-
ries of weight occur for the 10 in 2 initial cross-sectional

area. The results shown in figure 7, indicate that weight
decreases for the initial iteration of SDEP3 while the

weight increases for SDEP2. This initial decrease in

weight for SDEP3 adversely affects the convergence of
the method, and is discussed in detail subsequently.
A closer examination of the results from structural-

sizing subproblems for SDEP2 and SDEP3 reveals that

the structural-sizing subproblem for SDEP2 has no fea-
sible solution for the initial three iterations, but the

structural-sizing subproblem for SDEP3 has no feasible

solution for the initial eight iterations. For these iter-

ations, the structural-sizing subproblem minimizes the
infeasibility. For the 10 in 2 initial cross-sectional area,

all the displacement constraints are initially active for
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Figure 4. Convergence histories for weight of ten-bar truss

example problem, design case 1 with initial area for
sizing variables of 25 in'.
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Figure 5. Convergence histories for weight of ten-bar truss

example problem, desi_n case 1 with initial area for
sizing variables of 10 in'.

the SDEP2 formulation, while only the displacements
limited by 51, 52, and 53 are initially active in the

SDEP3 formulation with corresponding virtual forces

in the 6,000 - 85,000 lb range. For these'infeasible iter-

ations, to reduce the structural-sizing-subproblem ob-
jective function of weight plus a penalty proportional

to the largest virtual force (which corresponds to the

52 displacement limit), the initial changes to the sizing
variables reduce all the member areas except for bars

7 and 8. Decreasing these member areas decreases the
stiffness of the structure and reduces the virtual force

required to satisfy the 52 displacement limit. No fea-
sible solution is found in the next few iterations of the

SDEP3 structural-sizing subproblem, but in these iter-
ations more constraints contribute to the penalty and

weight increases as more sizing variables begin to move

toward the optimal values. The iteration histories for
cross-sectional areas of bars 1, 4, and 6 are shown in

figure 8 to illustrate typical sizing variable results. The

significantly different sizing variable results in the initial
iterations combined with the restrictive move limit con-

trol strategy severely reduces the speed of convergence
of the SDEP3 method in these results.

High-Speed Civil Transport Wing

The second sample problem considered in this study

is the structural sizing of the wing for a proposed high-
speed civil transport concept described in reference 15.

The details defining this structural-design problem are
too numerous to list so only a summary of its features

is presented. The finite element model used for the
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Figure 6. Convergence histories for weight of ten-bar truss

exaxnple problem, desi_}n case 2 with initial area for
sizing variables of 25 in'.

structural-response subproblem is shown in figure 9.

The upper wing cover panels are removed in this figure

to illustrate the rib and spar web arrangement. The
cover panels are titanium honeycomb sandwich panels,
and the shear webs are titanium sine-wave webs. The

model is relatively detailed with 1728 nodes (10,144

degrees of freedom) and 2447 elements. A single load
condition is analyzed in the structural response, a 2.5g

13
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Figure 7. Convergence histories for weight of ten-bar truss

example problem, desi_m case 2 with initial area for
sizing variables of 10 in'.
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Figure 8. Convergence histories for selected bar areas of
ten-bar truss example problem, design case 2 with initial
area for sizing variables of 10 in 2.

1930 in.

I. 726 in. .[

Figure 9. Finite element model of high-speed civil transport
wing with upper Cover panels removed.

balanced, symmetric supersonic pull-up maneuver.
There are 41 sizing variables considered in the

structural-sizing subproblem. These design variables in-

clude honeycomb sandwich facesheet thicknesses, hon-

eycomb sandwich core heights, and sine-wave web

gauges. The model is partitioned so that each _z-

ing variable sizes multiple elements. The constraints
considered are minimum and maximum gauges for the

facesheets and webs, minimum and maximum thick-

ncsses for the honeycomb core, maximum element

str_ses, local buckling due to compression and shear,

and a 12-foot limit on maximum deflection for the 2.5g

maneuver. The constraint "lumping" method using the
Kresselmeier-Steinhauser function described previously

is utilized to reduce the large number of possible stress
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andlocalbucklingconstraintsfromseveralthousandto
only 106. Thevalueof theKresselmeier-Steinhauser
parameterusedin thepresentstudyis50.

Becauseof the computationalexpenseof the de-
tailedstructuralmodel,thetwoequilibriumprogram-
mingformulationswereexecutedforonly16iterations.
Therelativemovelimit for thelastiterationwasthus
slightlygreaterthanthe6%minimumvalue.Thehis-
tory of structuralweightforthe SDEP2andSDEP3
methodsisshownin figure10.Theresultsfromthetwo
methodsarenearlyindistinguishable,andtheweight
reachesits limitingvalueof about41,800lbmby the
eleventhiteration.Theindividualconstrainthavingthe
largesteffectonthestructuralweightisthe12-footdis-
placementlimit. Theconvergencehistoryof thiscon-
straintforthe SDEP2andSDEP3designmethodsis
shownin figure11.Thescalesforthedisplacementcon-
straintin SDEP2andthecorrespondingvirtualforce
constraintin SDEP3arechosento showequivalentvi-
olationat thebeginningof iteration3becauseat this
iterationbothmethodshavethesamesetofsizingvari-
ables.Thefigureshowsthatthevirtualforceconstraint
in SDEP3andthenormalizeddisplacementconstraint
in SDEP2followsimilarpathsto reachfeasibledesign
space,howeveralthoughbothconstraintsarerelatedto
thewingdisplacementlimit, theycannotbe directly
compared.Thetwomethodsyielddifferencesin the
designhistoryforsomeof thewingsizingvariablesas
illustratedin figure12. Althoughtheweighthistories
shownpreviouslyarenearlyidentical,noticeablediffer-
encesinthesizingvariablehistoriesforthetwomethods
occur.Sizingvariables24and25correspondto thick-
nessesofshearwebswiththenormalizedordinatevalue
1.0correspondingto a thicknessof 0.1in. Sizingvari-
ables18and34aretypical,normalizedhoneycombcore
andfacesheetthicknesses,with normalizingfactorsof
5.0in. and0.2in.,respectively.Althoughsomediffer-
encesappearin thesizingvariablehistoriesof thetwo
SDEPmethodswiththethird iteration,thedifferences
essentiallydisappearbythelastiteration.

Concluding Remarks

The present study is an initial investigation in

the use of equilibrium programming (EP) as a frame-

work for design decomposition. The advantages of

performing decomposition within the EP framework
are the availability of existence theorems and optimal-

ity criteria for the solution to the decomposed prob-

lem. Three decompositions of structural-design prob-
lems into structural-sizing and structural-response sub-

problems are developed using this equilibrium program-

ming framework. Two of the methods developed (i.e.,

SDEP1 and SDEP2) are shown to be equivalent to the

existing conventional methods of fully stressed design,

and of nonlinear programming using approximation
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Figure 10. Convergence histories for weight of high-speed
civil transport wing example problem.
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Figure 11. Convergence histories for displacement constraint
of high-speed civil transport wing example problem.

concepts for rapid analysis. In the third method for op-

timal structural design presented (i.e., SDEP3), the dis-

placement constraints are applied within the structural-
response subproblems. However, the structural-sizing

subprobIem acquires new constraints which effectively

control the magnitude of "virtual" forces that are ap-

plied in the structural-response subproblems to sat-

isfy the displacement constraints. The optimality of

solutions generated by this third method is demon-
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Figure 12. Convergence histories forselected sizing variables
of high-speed civil transport wing example problem.

strated analytically, and by numerical examples of a
simple ten-bar truss design problem, and of a com-

plex, high-speed civil transport wing design problem.

In the example problems, the number of iterations to
convergence for the third design method are approx-

imately equal to the conventional nonlinear program-

ming approach using first-order Taylor series approxi-

mations for a rapid analysis. However, the total com-

putational expense is slightly larger because of the ac-

tive constraint set approach to solving the constrained
structural-response subproblems. In addition, the con-

vergence of the third method sometimes degrades when
iterations occur which have no feasible solution to the

structural-sizing subproblem. This degradation appears

related to the tendency of the solution algorithm for
the structural-sizing subproblem to minimize the mag-

nitude of the "virtual" force constraint violation by in-
creasing the flexibility of the structure.

Appendix

The equivalence of the necessary conditions for the

SDEP3 equilibrium programming method to a nonlin-

ear programming approach that yields an optimal struc-

tural design is demonstrated in this appendix. For
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simplicity, only displacement constraints, and a single

structural response corresponding to one load case are

considered. Also, the displacement constraints are as-
sumed to have the form

gu = Umax - u > 0 (A1)

where it is also assumed that the nodal reference frames

are oriented so that all deflection limits are maximums.

The nonlinear programming formulation, such as

given by statement (5), simplifies to:

rain W(v)
v (A2)

gu = u._x - u(v) > 0

where u(v) is the solution to the structural-response
problem given by statement (3) with necessary condi-

tions given by equation (4). In this nonlinear program-

ming approach, the necessary conditions for statement

(A2) are given by statement (6), two conditions of which

simplify to

OW(v) - T du,

+ A, _ = 0 (A3)

A, >0

where u, (and the corresponding A,) indicates those

displacements which are at their constraint boundaries
in the problem represented by statement (A2). The

term du,/dv in the problem represented by statement

(A3) is determined by taking the derivative of equation

(4) with respect to v

du OK(v)u
K(v)_-_ + _ = [0] (A4)

and forming the matrix du,/dv from terms of the

matrix du/dv corresponding to the displacements at
their constraint boundaries.

In the SDEP3 equilibrium programming formulation

of this problem, only those displacements at the con-

straint boundary effectively contribute to the necessary
conditions so the structural-sizing subproblem given by

statement (25) s!mplifies to:

rrdn W(v)
xO_.v

d;q (v - - > o
dv

(AS)

and the structural-response subproblem given by state-



ments(17)and(19)simplifiesto: ditionu = u 1, fields the equation

min
x I

Umax - u 1 _> 0

V 1 --V=0

0K(v)u l
+ Ov = [0l

(A6)

where the formal definition of X 1 is x ! -- (u 1,
Xl,,vl, dul/dv, dXl,/dv), u I is ordered into those dis-

placements not at the constraint boundary u_, fol-

lowed by those at the constraint boundary so that

u I = (u_, u.l), and the quantities X l are the Lagrange
multipliers for the displacements u,1 at the constraint
boundaries. The two relations of interest in the neces-

sary conditions for subproblem (A5) becomes

oqW( v ) I.iTd_ll
+ = 0 (AT)

#>0

where ta are the Lagrange multipliers for the inequality

constraints in statement (A5).
The desired result is to show that if x ° = v and x t

is an equilibrium point for SDEP3 (i.e., solves (AS) and

(A6) and thus their necessary conditions), then v and
u = u I satisfy the necessary conditions for an optimal

solution of the nonlinear programming formulation, in

particular equation (4) and statement (A3). To accom-
plish this result, express the two necessary conditions
for the structural-response subproblem represented by

statement (A6) as

K(v)u I + - F E = 0

>__o

(AS)

where the Lagrange multipliers corresponding to un-

constrained displacements are explicitly shown as zero.
Comparing necessary conditions represented by state-

ments (4) and (AS), it is apparent that u cannot equal

u I unless X.1 = 0. This condition is assured by the

second relation in statement (AS), and the inequality

constraints in the structural-sizing subproblem repre-
sented by statement (AS). Combining equation (A4),

the last two equations in statement (A6), and the con-

(A9)
where the matrix K has been partitioned as shown. The

first set of equations in (Ag) can be solved to give

duu -l du.-- = --'_- + K A K B -_v (A10)

Substituting equations (A10) in the second set of equa-

tions in (A9) results in

(KD - KTK_IKB) du, _ dX,1 (All)dv dv

Finally, substituting equation (All) into the necessary

conditions represented by statement (AT), the desired

result of the necessary conditions represented by state-
ment (A3) is obtained with

xT =/_T (K D _ KTKAIKB) (A12)

With the demonstration that the equilibrium point

of SDEP3 satisfies equation (4) and the first relation in

(A3), the final step required is proof that the inequal-

ity in (A3) is also satisfied. To do so requires the as-

sumption that the SDEP3 equilibrium point is isolated

(i.e., there is no other equilibrium point within an
neighborhood of v). The proof will be by contradiction.

First a_ume that at the equilibrium point of a SDEP3

problem, one or more components of X. computed from
equation (A12) axe negative. This assumption implies

the existence of a more optimal, neighboring, feasible

point. Specifically, within an e neighborhood of v and

u, quantities ve and ue exist and satisfy equation (4),

the inequality constraint in statement (A2), and the

relation W(v_) < W(v). Since u_ is the solution to
an unconstrained potential energy minimization (i.e.,

equation (4)) with the stiffness matrix K(ve), and it

also satisfies the displacement constraints in statement
(A2), then u 1 = u_ is the solution to the constrained

potential energy minimization given in statement (A6)
for the same stiffness matrix. Thus, the necessary con-

dition equations in both statements (4) and (AS) must

be satisfied, and X 1 = 0 for both equations to hold.
Finally, the choice x 0 = v ! = ve satisfies the inequal-

ity constraint in statement (A5) with the weight W in
statement (A5) smaller for x 0 = vt than for x ° = v.

Since the e chosen is arbitrary, either the original point

is not an equilibrium point or the equilibrium point

17



isnot isolated,contradictingtheoriginalassumptions.
Thus,theinequalityin statement(A3)musthold,and
theequilibriumpointis alsoanoptimalpoint.
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